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Abstract

Data compression and prediction are closely related. Thus
prediction methods based on data compression algorithms
have been suggested for the branch prediction problem. In
this work we consider two universal compression
algorithms: prediction by partial matching (PPM), and a
recently developed method, context tree weighting
(CTW). We describe the prediction algorithms induced by
these methods. We also suggest adaptive algorithms -
variations of the basic methods that attempt to fit limited
memory constraints and to match the non-stationary nature
of the branch sequence. Furthermore, we show how to
incorporate address information and to combine other
relevant data. Finally, we present simulation results for
selected programs from the SPECint95, SYSmark/32,
SYSmark/NT, and transactional processing benchmarks.
Our results are most promising in programs with difficult
to predict branch behavior.

  1 . Introduction
A substantial body of information theory research [6, 15,
22, and others] deals with the problem of universal
coding, that is, compressing a sequence of symbols
produced by an unknown source. A universal compression
method builds a model of the source specifying the
probability at which various symbols occur, so that
frequently occurring symbols may be assigned short
codes. This probabilistic model may be used to predict the
next outcome in the sequence. Compression and
prediction are closely related: a sequence that is
compressed well is easy to predict, and on the other hand,
a random sequence is both incompressible and
unpredictable. In [7] it was shown that prediction and
compression performance of binary sequences can be
related

− ≤ ≤1 2h H M H( ) / , (1)

where h x x x x x( ) log ( ) log( )= − − − −1 1 is the binary

entropy function, M is the misprediction ratio, and H is the
entropy or compressibility. A more general relation
between prediction and compression for general
sequences is given in [8]. Hence if the compressibility of a
sequence of branch outcomes is H, we can theoretically
achieve misprediction of less than 0.5H.
In this work we use the close relationship between
compression and prediction methods, as indicated by (1).
Our primary objective is to apply recent information

theory results and methods of universal coding and
universal prediction to branch prediction. We explore the
application and performance of two algorithms, prediction
by partial matching, and context-tree weighting, a recently
introduced [18] universal data compression method.

  1 .   1  Related Work
Branch prediction has been a very active area of computer
architecture research in recent years [10,14,20,21]. The
more general problem, that of predicting the next outcome
in an arbitrary sequence of observations, has been a topic
of interest in information theory research for more than
four decades. It was Shannon himself who saw this
connection and used prediction to assess the entropy of
the English language[16], and build a “mind-reading”
machine that predicts human decisions. Kelly [9] and
Cover [4] relate information and data compression to
gambling. More recently, utilizing the theory of universal
coding for individual sequences of Ziv and Lempel [22],
Feder, Merhav and Gutman [7] presented a framework for
universal prediction that defines the connection and allow
the utilization of universal coding for prediction.
In computer architecture, data compression methods have
been recently applied to prefetching [5,17] and to branch
prediction [2,13]. In [2,13], Mudge, Chen, and Coffey
introduced the concept of using data compression methods
for branch prediction. Our work continues this approach.
We investigate and apply prediction methods based on the
following two algorithms:

  1 .  Willems, Shtarkov, and Tjalkens introduced a new
compression algorithm, context tree weighting (CTW),
in [18]. We apply the context-tree weighting algorithm
to branch prediction. We further develop the CTW
algorithm and propose some variations of it that make
it adaptive.

  2 .  Partial prediction matching (PPM) is a well known
data compression method [1,3,12] (in the rest of this
paper we refer to this method as static PPM). There
are several possible variations and extensions to the
PPM, see Williams [19]. Some can be described as
adaptive PPM. We look at both variations of PPM,
static and adaptive. The latter, adaptive PPM, employs
a context tree that grows dynamically, and is different
than the static PPM algorithm used for branch
prediction in [2].



  1 .   2  Paper Overview
We begin with a description of tree sources (section 2)
and context trees (section 3). Sections 2 and 3 follow
mostly the notation of [18], and provide the background
for the branch prediction algorithms. In section 4 we
describe the use of  context trees to model a sequence of
branches with the CTW and PPM algorithms, discuss
adding address information to the context tree, and
introduce the adaptive CTW and PPM algorithms. Section
5 contains performance results, and finally section 6 is a
summary of the results and directions for future research.

  2 . Tree Sources
We look at a program in execution as a source that
generates a binary sequence in which 1’s correspond to
taken branches and 0’s correspond to not-taken branches.
The simplest (and unrealistic) model is a memoryless
source that generates a 1 with probability p. A tree source
describes a source with multiple parameters pi that

depend on the previous sequence of bits.
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Figure 1 - Tree source
Assume that the outcome of previous branches is a binary

sequence x x x xT
t1 1 2= � . Beginning with the rightmost

bit xt , we trace our way from the root through the tree

until we reach a leaf node, where we find the parameter
for generating the next bit in the sequence. Hence the
probability that the next bit will be 1 in the sequence
produced by the tree source in Figure 1 is
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A tree source is specified by the model, which is the
structure of the tree, and the parameters (probabilities p1,
p2, p3 in Figure 1) defined at the leaf nodes.

  3 . Context Trees
Often we have to deal with unknown sources, that is, both
the model and the parameters of the source are not known.
Lacking more precise information, we use a context tree
for the source model. A context tree [18] is a binary tree
of depth d. Each path from root to a node in the tree
represents a binary sequence of length ≤ d. This sequence
is the context s of the node. The context of the root is the

null sequence λ. In Figure 2 below we draw the tree
horizontally with the root at the right so that the context of
a node in the tree can be visually associated with the
corresponding binary sequence.
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Figure 2 - Context tree of depth d = 3. The context of each
node is shown in a rectangle.

The subsequence of xT
1  associated with a context s is the

sequence of bits in xT
1  that occurred after the context s.

Example 1
Figure 3 shows a binary sequence in which the bits are
numbered 1 to 9. We also show several bits that occurred
in the “past” in order to provide the context for the first
bits in the sequence. Context 010, for example, occurs
twice in the sequence and is followed by bits 1 and 6.
Hence the subsequence associated with context 010 is 11
(bits 1, 6), shown circled in the figure.
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Figure 3 -  The bits at each node are the subsequence
associated with the context of that node.

In a tree of depth d, the current context path is the path
that corresponds to the d rightmost bits of the sequence. In
the example in Figure 3, the current context path is 110.



Having defined a model (a context tree) for the source, we
also need a way to specify its parameters. Disregarding

context trees for the moment, assume the sequence xT
1

consists of a zeros and b ones. Then the conditional
probability, defined by the Krichevsky and Trofimov [11]
distribution, that the next outcome in the sequence will be
a one is:

P X x
b

a b
e t

T( )
/

+ = = +
+ +1 11

1 2

1
. (2)

The probability of the entire sequence xT
1

1+  is the

product of the conditional probabilities of the bits in the
sequence:
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which, assuming the sequence xT
1  has a zeros and b ones,

can be rewritten as

P x P a b

a b

a b

e
T

e( ) ( , )

/ / ( / ) / / ( / )

( )
.

1
1

1 2 3 2 1 2 1 2 3 2 1 2

1 2 1

+ = =
⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅ + +
� �

�

(4)
Returning to the context tree, instead of counting zeros
and ones of the entire sequence, we count zeros and ones
at each node of the context tree separately.

Example 2
The subsequence associated with context s = 010 in
Figure 3 is 11, shown circled in the figure. We have the
count of zeros as = 0  and the count of ones bs = 2 , and

from equation (4), P a be s s( , ) / .= 3 8

We can choose any complete sub-tree (that is, every node
that is not a leaf node has both children) that includes the
root of the context tree to allocate a probability to the

sequence xT
1 as follows. The leaves si of this tree Tr are

the relevant contexts, and each xt  is associated with some

leaf. The entire probability will be
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The choice of  the tree Tr defines a model with variable
length history. The number of parameters in this model is
| |s , the number of leaves in the tree.

  4 . Prediction Algorithms Based on Context
Trees
  4 .   1  Context Tree Weighting (CTW) Algorithm

Looking again at a binary sequence x x x xT
t1 1 2= � ,

si is the context of the sequence at level i ≥ 1the tree,

namely the context defined by the subsequence
x x xt i t t− + −1 1� . We define si as the context specified by

the subsequence x x xt i t t− + −1 1� , where xt i− +1 is the bit

complement of xt i− +1. At level i = 0 (the root node), the

context is the null context s0 = λ . The weighted

probabilityPw
si at an internal node node si , is defined by

the following recursive equation:

P P P Pw
s

e
s

w
s

w
si i i i= + + +

1

2

1

2
1 1 , (5)

where Pe
si is determined by the count of zeros asi

and

ones bsi
at node si  using (4). For leaf nodes we simply

have

P Pw
s

e
si i= . (6)

Example 3
Figure 4 illustrates weighted probabilities of the previous
context tree example calculated using equations (5) and
(6).  
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Figure 4 - Weighted probabilities at the nodes of the
context tree example from Figure 3.

We have now chosen a model, a context tree of depth d, to
represent a source of branch outcomes, and we have a
way, equations (5) and (6), to compute the parameters of
the model. Using equations (5) and (6), we compute the

weighted probabilityPw
λ at the root node (whose context

is the null context λ).



It can be shown that P xw
Tλ ( )1  is a weighted probability

that weights the probabilities P xTr
j T( )1  induced by all

possible complete subtrees. Specifically

P x w Tr P xw
T j

j
Tr

T
j

λ ( ) ( ) ( )1 1= ⋅∑ ,

where w Tr j s j( )
( | | )= − −

2
2 1

 and | |s j is the number of

leaves in Tr j .
We use the context tree to predict branches as follows. Let

xT
1  be the outcome sequence of previous branches.

Assuming the next branch outcome is 1, we append 1 to

xT
1  to get the sequence of branches that corresponds to

this assumption. We update b, the number of 1’s, and
recompute the weighted probabilities at the nodes of the
context tree. Note that only nodes on a single path from
root to a leaf node are affected. The weighted probability

at the root node, after the update, is Pw
'λ ( P'  is P

updated). The outcome of the branch that follows the

sequence xT
1  is 1 with a probability

P X x
P

P
t

T w

w

( )
'

+ = =1 11
λ

λ
(7)

We predict that the outcome of the branch will be 1 using
the randomized predictor described in [7]. Specifically, if

P Pw w
' / .λ λ ε> +05 , where ε = 1/ T , we predict 1,

if P Pw w
' / .λ λ ε< −05  we predict 0, and if

05 05. / .'+ ≥ ≥ −ε ελ λP Pw w  we predict 1 with

probability Φ( )P as shown in Figure 5.
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Figure 5 - Randomized predictor

If the branch outcome is indeed 1, we retain the updated
context tree and proceed to predict the next branch.

Otherwise, we restore the previous values of the context
tree, and perform the update that corresponds to
appending a 0 to the branch sequence.

Example 4
Appending a 1 to the right of the sequence of bits in
Figure 3, and recalculating the weighted probabilities, we

get Pw
' . .λ = 0 0008006 We have Pw

λ = 0 0010375.  from

Figure 4. Hence P Pw w
' / . ,λ λ = 0 77  and we predict the

next branch outcome will be 1.
The following values are maintained at each node s of the
context tree:

  1 .  A count of the zeros as that occurred in context s.

  2 .  A count of the ones bs that occurred in context s.

  3 .  The probability estimate P a be s s( , ) given by

equation (4).

  4 .  The weighted probabilityPw
s given by equations (5)

and (6).
The last two values allow incremental computation at
affected nodes, rather than recomputing the parameters of
the entire tree for each update.

  4 .   2  Sequential Representation of CTW Based
Prediction
Interestingly, the conditional probability used for

predictionP X xt
T( )+ =1 11 turns out to be a weighted

sum of the  conditional probabilities of all the nodes on
the current context path, as shown below.
Beginning with  (5)
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For internal nodes, define
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For leaf nodes, we define P P Pn
s

e
s

w
si i i= / , and from

(6) it follows Pn
si = 1.



As before, to get the probability that the next outcome

after sequence xT
1  will be 1, we append 1 toxT

1 . The

updated weighted probability at node si is
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Substituting the above definition and the definition of

Pn
si from (8) into equation (9), we get:
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The probability that the next branch outcome will be 1 is:
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From (10), P
si

0 depends only on the count of zeros and

ones at a node, not on other nodes. We can interpret

equation (12) as follows. The contribution P
si

0 of a node

si  is weighted by the parameter Pn
si at that node, and by

( ) ( )1 11− −−P Pn
s

n
i

�

λ at higher (closer to root) levels

of the tree. Hence the algorithm gives higher weight to

higher levels of the tree, unless Pn
si at these levels is low,

in which case lower levels also make a “contribution.”

  4 .   3  Prediction by Partial Matching (PPM) Using
Context Trees
Prediction by partial matching is an alternative to the
context tree weighting method described in the previous
section. With PPM we also use a context tree, but
maintain only two items at each node si :

  1 .  A count of the zeros asi
that occurred in context si .

  2 .  A count of the ones bsi
that occurred in context si .

We do not use the probability estimate P a be s si i
( , ) or

the weighted probabilityPw
si . We walk the relevant path

(determined by the current sequence) in the context tree,
from leaf node toward root, until we find a node at which
the count of zeros is different than the count of ones. In
other words, we seek the deepest context that has
sufficient information to make a prediction. Using

P
b

a b
=

+
+ +

1 2

1

/
 from (2), we predict the next branch

outcome is 1 with probability Φ( )P , when Φ( )P  is

shown in Figure 5.

  4 .   4  Adding Address Information
We have assumed so far that the only information used to
predict the next branch outcome is the global sequence of
branches. We can add address information by creating a
context tree in which the context is determined by
concatenating a address bits to h bits of branch outcome
history.



Example 5
If the branch address is ... 10 and the global history bits
are ... 0 1 1 0 0, then the current context in the 4-level
context tree shown in Figure 6 is 0 0 1 0. It consists of two
address bits and two history bits.
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Figure 6 - Context tree using history bits and address bits.
This method of adding address information may be
applied to both static trees and adaptive trees, described in
the next section.

  4 .   5  Prediction Using Adaptive CTW and PPM
Models
We limit the length of the sequence “remembered” by the
context tree to the length of a history window. We
“forget” updates done by bits that leave the window, and
deallocate nodes that no longer contain information within
the history window; this check is only necessary at nodes
on the context path of a bit leaving the window. This
method creates an adaptive context tree.
From equations (2) and (3) we get

P x
b

a b
P xe

T
e

T( )
/

( )1
1

1
1 2

1
+ = +

+ +
where a is the count of zeros and b is the count of ones in

xT
1 . Using our shorthand notation Pe

'  for P xe
T( )1

1+  we

have

P
b

a b
Pe e

' /= +
+ +

1 2

1
. (13)

This update is done along the current context path for
every new branch outcome, for both static and adaptive
trees. For adaptive trees only, we maintain a shadow tree
that runs behind the context tree by the length of the
history window (that is, the shadow tree is updated by bits
that leave the history window). To “forget” updates in the
context tree, we undo the operation in equation (13) for
every bit that leaves the history window (along the context
path of that bit), by performing the reverse operation:

P
a b

b
Pe e=

+ +
+

shadow shadow

shadow

1

1 2/
' .

We extend the adaptive tree by adding two childrens at the
leaf node of the current context path. We need two nodes
because the adaptive CTW algorithm uses two nodes in
the calculation of Pw .

Example 6
Assume the current sequence is ... 0 1 0 0 1 1 and the
context tree is as shown in Figure 7a. The leaf node on the
current context path is 1 0 0 1 1. Now that the context 1 0
0 1 1 occurs for a second time (it must have occurred once
earlier, that’s how it became part of the tree), we add two
children nodes to it. The result is the extended tree in part
(b) of the figure.
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Figure 7 - Extending an adaptive tree. Nodes on the
current context path shown in rectangles.

Below are the adaptive CTW and PPM algorithms.

  1 .  Create a small balanced context tree.

  2 .  Use the context tree to predict the next branch
outcome, as described in section  4. 1 for CTW and in
section  4. 3 for PPM.

  3 .  Update the context tree with the observed branch
outcome.

  4 .  If the memory limit and maximum tree depth have not
been exceeded, add two children nodes at the leaf
node of the current context path.

  5 .  “Forget” bits leaving the history window. Deallocate
empty nodes.

Up to now we have described the application of two
known data compression algorithms, CTW and PPM, to
branch prediction. We have extended these algorithms by
adding address information and by making the context



tree adaptive. In the rest of the paper we describe the
simulation of these algorithms and performance results.

  5 . Performance Evaluation
We have simulated the following branch prediction
algorithms.

 •  Local

  Two level algorithm. The first level, indexed by the
lower address bits of the branch address, consists of
local history registers. The second level consists of a
single table of 2-bit counters shared by all the local
history registers.

 •  Global

  A table of 2-bit counters indexed by the global
history register.

 •  Global CTW (GCTW)

  CTW algorithm using a balanced static tree.

 •  Global PPM (GPPM)

  PPM algorithm using a balanced static tree.

 •  Adaptive Global CTW (AGCTW)

  CTW algorithm using an adaptive tree.

 •  Adaptive Global PPM (AGPPM)

  PPM algorithm using an adaptive tree.

 •  Adaptive (tree), (branch) Address, Global (history)
CTW (AAGCTW)

  CTW algorithm using an array of adaptive trees
indexed by the lower branch address bits. The global
branch history is used to update the context
information in the context trees.

 •  Adaptive (tree), (branch) Address, Global (history)
PPM (AAGPPM)

  PPM algorithm using an array of adaptive trees
indexed by the lower branch address bits. The global
branch history is used to update the context
information in the context trees.

 •  Combined Local and AAGPPM
Regarding the simulation parameters shown in Table 1 we
note the following.

  1 .  The static tree algorithms (GCTW, GPPM) use a
preallocated, fixed sized, tree of depth 14.

  2 .  The adaptive algorithms (AGCTW, AGPPM,
AAGCTW, AAGPPM) expand the tree up to the
maximum depth indicated. We allow a depth of 20 for
AAGCTW and AAGPPM versus a depth of 25 for
AGCTW and AGPPM because AAGCTW and
AAGPPM use an array of trees, while AGCTW and
AGPPM use a single tree.

  3 .  Both static and adaptive trees have the same upper

limit on the number of tree nodes (2 115 − ).

  4 .  We have experimented with various counters. GCTW
uses infinite counters for zeros  and ones. GPPM,
AGCTW, and AAGCTW use separate counters for
zeros and ones that count up to 10 (decimal), after
which the values of both zeros and ones counters is
divided by two. The remaining algorithms use 2-bit
saturation counters.

  5 .  The adaptive tree algorithms employ a history window
of 25000 branches.

  6 .  Both global and local use history registers of length
14.

  7 .  Local uses the lower 14 bits of the branch address to
index the array of local history registers. AAGCTW
and AAGPPM use the lower 8 bits of the branch
address to index and array of adaptive trees.

  8 .  The combined Local and AAGPPM method uses a
table of saturated counters, similar to [10], to select
the successful predictor.

  5 .   1  Benchmarks
We have used the following traces (see Tables 2 and 3):

 •  Five of the eight SPECint95 traces (go, compress,
m88ksim, gcc, and perl)

 •  CorelDraw 6.0 (a desktop graphics program), from the
SYSmark/32 benchmark

 •  Borland Paradox 7.0 (a database program), from the
SYSmark/32 benchmark

 •  Microsoft Word 6.0 (word processing), from the
SYSmark/NT benchmark

 •  Microsoft Excel 7.0 (spreadsheets), from the
SYSmark/NT benchmark

 •  Transactional processing benchmark
We show branch prediction results for all the programs in
Tables 4 and 5. To prevent overloading the graphs, in
figures that show the behavior of the algorithms (Figure 8
to Figure 11) we only display the SPECint95 programs.
In all the simulations, the predictor’s input is conditional
branches only. The prediction rate is the ratio of the
number of times the prediction was correct and the
number of conditional branches.

  5 .   2  Simulation Results
Figure 8 illustrates the non-stationary behavior of gcc as
the program executes close to 5,000,000 branches. The
most striking observation is the large variation in the
instantaneous prediction rate, which changes between
87% and 98% even in advanced stages of the program.
This behavior motivated us to develop the adaptive tree
algorithms (AGCTW, AGPPM, AAGCTW, AAGPPM),
which adapt the context tree structure and parameters to
the program behavior.



Figure 9 and Figure 10 display the data we have used to
tune the parameters of the adaptive tree algorithms: the
depth of the tree, the length of the history window, and the
number of nodes in the tree. As shown, there are large
differences between the programs in terms of the effect of
the parameters and the point at which asymptotic behavior
is reached. Considering this data, for the final results
shown in Table 4 we have selected parameters (see Table
1) that allow programs to either reach asymptotic behavior
or close to it.
Figure 11 shows that by using address bits (and an array
of trees rather than a single tree) we need fewer levels in
the context tree to achieve asymptotic results. For
example, if we use one address bit we need an 15-level
tree, but if we use 8 address bits we can reduce the depth
of the tree to 10 levels. As shown in the figure, using
address bits improves branch prediction by up to 7% for
GO.
Table 4 shows results for two 2-level branch prediction
methods (global and local), three context tree weighting
algorithms (global CTW, adaptive global CTW, adaptive
local CTW), three prediction by partial matching
algorithms (global PPM, adaptive global PPM, adaptive
local PPM), and a combined method (local and
AAGPPM). It can be seen that PPM and CTW often
achieve close results, although CTW uses more
information to weight the context. The reason for this is
that Pn , which determines how the contexts are weighted,

is close to zero in inner nodes. As a result, CTW uses
statistics taken mostly from leaf nodes, and often makes
predictions close to PPM, which always uses only the leaf
nodes.
Adaptive methods generally perform better than static
methods, producing improvements of up to 7% (see the
difference between GCTW and AGCTW for GC). The
effectiveness of using address bits is highly program
dependent, and the improvement ranges from 0% (CO) to
7% (GO). The combined predictor improves the results of
GO, the program with the highest misprediction rate, by
0.85%, but is less effective for the other programs, whose
prediction rate is already high.

  6 . Conclusions
Based on the close relationship between universal coding
and universal prediction, we have applied a recent
universal coding algorithm, context tree weighting, to
branch prediction. To our best knowledge, this paper is
the first investigation of using context tree weighting to
predict branches. We have introduced the adaptive CTW
and PPM algorithms. In trees with a limited number of
nodes, the adaptive algorithm makes better use of the
available resources by dynamically extending the tree in
the direction of the current context path. While earlier
work on PPM and branch prediction has been reported in

[2], this paper is the first investigation of applying
adaptive PPM to branch prediction.
The highest potential for improvement is in programs with
difficult to predict branch behavior. This is where our
results are most promising. Of the ten traces selected from
the SPECint95, SYSmark/32, SYSmark/NT, and
transactional processing benchmarks, the results for “go,”
the program with the highest misprediction rate, show that
the combined local/AAGPPM predictor produces a
prediction rate of 82.77%, up 3.5% from local (a
two-level predictor) alone.
We hope these initial results will generate interest in the
systematic application of information theory results to
branch prediction. A lot remains to be done. We have not
done sufficient “fine tuning” of a large number of
parameters that may affect the prediction performance,
and have not looked at many other possible variations of
the algorithms. Another major issue is the practical
implementation of the algorithms and their cost in
hardware, a topic we are currently investigating.
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Local Global GCTW GPPM AGCTW AGPPM AAGCTW AAGPPM
Tree N/A N/A Static Static Adaptive Adaptive Adaptive Adaptive
Max tree depth N/A N/A 14 14 25 25 20 20
Number of nodes N/A N/A 2 115 − 2 115 − 2 115 − 2 115 − 2 115 − 2 115 −
Counters 2-bit 2-bit infinite Threshold 10 Threshold 10 2-bit Threshold 10 2-bit
History window size N/A N/A N/A N/A 25000 25000 25000 25000
History reg. length 14 14 N/A N/A N/A N/A N/A N/A
Lower address bits 14 N/A N/A N/A N/A N/A 8 8

Table 1 - Simulation parameters

Program Label Used in
Figures

Conditional
Branches

go GO 3414567
compress CO 4291626
m88ksim MK 4834240
gcc GC 4919173
perl PE 4224558

Table 2 - SPECint95 traces

Program Label Used in
Figures

Conditional
Branches

CorelDraw 6.0 CD32 2551154
Borland Paradox 7.0 PD32 2048448
Microsoft Word 6.0 WDNT 3217719
Microsoft Excel 5.0 MXNT 1210418
Transactional processing TPC 1329471

Table 3 - SYSmark/32, SYSmark/NT, and transactional
processing traces



Figure 8 - Cumulative and instantaneous branch prediction rate for gcc (GC), using the adaptive PPM (AGPPM) algorithm.

Figure 9 - History window length and tree depth parameters (AGPPM algorithm).

Figure 10 - The number of nodes in the tree and its effect on the branch prediction rate (AGPPM algorithm).



Figure 11 - Varying the number of address bits for GO, using the adaptive AAGPPM algorithm.

Algorithm\Program GO CO MK PE GC
Global 73.17 89.23 92.71 91.50 86.58
Local 79.30 88.12 97.05 96.07 90.90
GCTW 71.39 88.27 93.48 92.02 82.97
GPPM 72.76 89.80 93.25 91.55 86.42
AGCTW 73.46 91.24 95.89 97.27 90.09
AGPPM 74.46 90.39 95.84 96.98 90.67
AAGCTW 81.52 91.31 96.84 97.80 93.22
AAGPPM 81.93 90.49 96.85 97.67 93.57
Local +
AAGPPM

82.77 90.54 97.17 97.65 93.64

Table 4 - Branch prediction rate, SPECint95 programs. The predictor’s input is conditional branches only. The prediction rate
is the ratio of the number of times the prediction was correct and the number of conditional branches.

Algorithm\Program CD32 PD32 WDNT MXNT TPC
Global 93.7 88.5 91.1 95.8 95.24
Local 98.66 95.35 96.11 92.2 89.97
GCTW 93.8 87.9 90.2 95.6 88.0
GPPM 93.8 88.3 91.2 95.5 89.5
AGCTW 96.78 87.33 94.31 95.14 89.48
AGPPM 96.65 87.71 94.41 95.16 89.26
AAGCTW 97.76 91.72 96.79 95.3 92.52
AAGPPM 97.5 91.97 96.81 95.05 92.4
Local +
AAGPPM

98.2 94.48 97.20 95.07 94.87

Table 5 - Branch prediction rate, SYSmark/32, SYSmark/NT, and transactional processing traces. The predictor’s input is
conditional branches only. The prediction rate is the ratio of the number of times the prediction was correct and the number of
conditional branches.


